Critical Points of Toroidal Belyi Maps

PRiME 2021: Pomona Research in Mathematics Experience Project #2: Critical Points of Toroidal Belyĭ Maps

Research Advisor: Dr. Edray Goins Tesfa Asmara (Pomona College) Erik Imathiu-Jones (California Institute of Technology) Maria Maalouf (California State University at Long Beach) Isaac Robinson (Harvard University) Sharon Sneha Spaulding (University of Connecticut)

Motivation

We studied the question of whether or not a set of points on an elliptic curve forms a group for a specific subset of points on an elliptic curve over the complex numbers.

Our Objects of Study:

Elliptic curves over $\mathbb C$

Critical points of Toroidal Belyĭ maps

Question: When do these critical points form a group?

Background

Definition

A group is a pair (G, \oplus) which consists of a non-empty set G and a binary operation $\oplus : G \times G \to G$ such that G contains an identity element O, every element $P \in G$ has an inverse element $[-1]P \in G$, and \oplus is associative. A group is said to be abelian if \oplus is also commutative.

Example: Consider the pair $(Z_n, +)$ where $Z_n = \{0, 1, ..., n-1\}$ and + denotes addition modulo n. $(Z_n, +)$ is an abelian group.

Definition

A subset $H \subseteq G$ is said to be a subgroup of G if H forms a group under \oplus . More generally, we may consider the subgroup *generated* by the elements of H: this is the smallest subgroup of G containing H.

Proposition 1

Let G be finite group and let $P \in G$. Then the order of P divides the order of G.

Number Fields

Let $\nu \in \mathbb{C}$ be a root of an irreducible polynomial $f(t) = c_n T^n + \cdots + c_1 T + c_0$ with coefficients $c_k \in \mathbb{Q}$.

Denote $K = \mathbb{Q}(\nu)$ as the collection of complex numbers in the form $a_0 + a_1 \nu + \cdots + a_{n-1} \nu^{n-1}$ where $a_k \in \mathbb{Q}$.

• The set K is called a number field.

Say that $s \in \mathbb{C}$ is the root of a irreducible polynomial $g(T) = d_m T^m + \cdots + d_1 T + d_0$ with coefficients $d_k \in K$.

Denote L = K(s) as the collection of complex numbers in the form $b_0 + b_1 s + \cdots + b_{m-1} s^{m-1}$ where $b_k \in K$.

• The set L is called an extension of K; note that L is also a number field.

We define an embedding L into \mathbb{C} fixing K to be that map where we evaluate $s \mapsto s_i$ for some root $s_i \in \mathbb{C}$ of g(T).

• Denote Emb(L/K) as the collection of embeddings $L \hookrightarrow \mathbb{C}$ fixing K.

Elliptic Curves

Definition

An elliptic curve, E, is a non-singular curve of genus one. In other words, it is a curve generated by an equation f(x, y) = 0 where

$$f(x, y) = y^{2} + a_{1} x y + a_{3} y - (x^{3} + a_{2} x^{2} + a_{4} x + a_{6})$$

and where a_1, a_2, a_3, a_4, a_6 are complex numbers with O_E being the "point at infinity."

Theorem

The set of complex points on an elliptic curve, $E(\mathbb{C})$, is a torus.

Proposition 2

- There exists a binary operation \oplus such that $(E(\mathbb{C}), \oplus)$ is an abelian group with identity O_E .
- **2** Points P, Q, R on $E(\mathbb{C})$ lie on a line if and only if $P \oplus Q \oplus R = O_E$.

Definition

An isogeny $\psi : E(\mathbb{C}) \to X(\mathbb{C})$ is a group homomorphism between two elliptic curves, that is, $\psi(P \oplus Q) = \psi(P) \oplus \psi(Q)$ for $P, Q \in E(\mathbb{C})$.

surjective, and ker(ψ) is a finite subgroup of $E(\mathbb{C})$.

The order of $P \in E(\mathbb{C})$ is the smallest positive integer *n* such that [n]P = O, where [n]P denotes $P \oplus P \oplus \cdots \oplus P$ for exactly *n* summands *P*. A torsion point is a point of finite order. The set of torsion elements for an elliptic curve *E* over the complex numbers is

Proposition 3 $E(\mathbb{C})$ Let $\psi : E(\mathbb{C}) \to X(\mathbb{C})$ be a non-constant isogeny. Then ψ is

Definition

denoted $E(\mathbb{C})_{\text{tors}}$.

 $E(\mathbb{C})$

Figure: An isogeny

Proposition 4

• $E(\mathbb{C})_{\text{tors}} \simeq (\mathbb{Q}/\mathbb{Z}) \times (\mathbb{Q}/\mathbb{Z}).$

② Assume G ⊆ E(C)_{tors} is a finite subgroup. Then G ≃ Z_m × Z_n for some positive integers m and n.

Belyĭ Maps

In the following we focus on the sphere and torus $S = \mathbb{P}^1(\mathbb{C})$ and $S = E(\mathbb{C})$, but many of the definitions hold for any compact, connected Riemann surface S.

Definition

- A meromorphic function is a map β: S → P¹(C) that is a ratio of two polynomials. Denote K(S) as the collection of all such functions.
- For each point P = (x₀, y₀) in S, denote O_P ⊆ K(S) as the collection of meromorphic functions such that β(P) ≠ ∞.
- For any positive integer e, denote

$$M_P^e = \left\{ \phi \in \mathcal{O}_P \left| \phi(x, y) = g(x, y)f(x, y) + \sum_{i+j=e} p_{ij}(x, y)(x-x_0)^i (y-y_0)^j \right\} \right\}$$

for g, $p_{ij} \in O_P$. For example, M_P is just the collection of those meromorphic satisfying $\beta(P) = 0$ when e = 1.

• Denote the order of β at P as the integer

$$\operatorname{ord}_{P}(\beta) = \begin{cases} e \ge 0 & \text{if } \beta(P) \neq \infty \text{ and } \beta \in M_{P}^{e} \text{ but } \beta \notin M_{P}^{e+1}, \text{ and} \\ e < 0 & \text{if } \beta(P) = \infty \text{ and } 1/\beta \in M_{P}^{-e} \text{ but } 1/\beta \notin M_{P}^{1-e} \end{cases}$$

 The ramification index of β at P ∈ E(C) denoted e_β(P) is defined as e_β(P) = ord_P [β(x, y) − β(P)]. Order and ramification can also be defined via places and valuations.

Proposition 5

Let S be a compact, connected Riemann surface defined by a polynomial f(x, y). Given meromorphic function $\beta : S \to \mathbb{P}^1(\mathbb{C})$, the ramification index $e_{\beta}(P) \ge 2$ at a point $P \in S$ if and only if

$$\frac{\partial f}{\partial x}(P) \ \frac{\partial \beta}{\partial y}(P) - \frac{\partial f}{\partial y}(P) \ \frac{\partial \beta}{\partial x}(P) = 0.$$

To see why, note that, for any function $g \in \mathcal{O}_P$, we have a series expansion around $P = (x_0, y_0)$ in the form

$$\begin{split} \left[\beta(x,y) - \beta(P)\right] + \left[g(P) \ \frac{\partial f}{\partial x}(P) - \frac{\partial \beta}{\partial x}(P)\right](x - x_0) + \left[g(P) \ \frac{\partial f}{\partial y}(P) - \frac{\partial \beta}{\partial y}(P)\right](y - y_0) \\ &= g(x,y) \cdot f(x,y) + \sum_{i+j=2} p_{ij}(x,y) \cdot (x - x_0)^i (y - y_0)^j \in M_P^2 \end{split}$$

for some $p_{ij} \in O_P$. This means $\beta(x, y) - \beta(P) \in M_P^2$ if and only if we can find $q = g(P) \in \mathbb{C}$ such that

$$\frac{\partial\beta}{\partial x}(P) = q \cdot \frac{\partial f}{\partial x}(P) \quad \text{and} \quad \frac{\partial\beta}{\partial y}(P) = q \cdot \frac{\partial f}{\partial y}(P) \iff \qquad \frac{\partial\beta}{\partial x}(P) \frac{\partial f}{\partial y}(P) - \frac{\partial\beta}{\partial y}(P) \frac{\partial f}{\partial x}(P).$$

Definition

- A point P ∈ S for which the conditions in Proposition 5 hold is called a critical point.
- A critical value $q \in \mathbb{P}^1(\mathbb{C})$ is a number $q = \beta(P)$ for some critical point P.
- A point $Q \in S$ is a quasi-critical point if $\beta(Q) = \beta(P)$ for some critical point P.
- The degree of a meromorphic function $\beta: S \to \mathbb{P}^1(\mathbb{C})$ is the size of the inverse image $\beta^{-1}(\{q\})$ for any $q \in \mathbb{P}^1(\mathbb{C})$ that is not a critical value.

Definition

A Belyĭ pair (S,β) is a Riemann surface S along with a meromorphic function $\beta: S \to \mathbb{P}^1(\mathbb{C})$ with at most three critical values. We can – and do – choose these values to be contained in $\{0, 1, \infty\} \subseteq \mathbb{P}^1(\mathbb{C})$.

Proposition 6

Let S be a compact, connected Riemann surface of genus g(S). Let (S, β) be a Belyĭ pair with critical values contained in $\{0, 1, \infty\} \subseteq \mathbb{P}^1(\mathbb{C})$ with ramification indices $e_P = e_\beta(P)$ as well as preimages $B = \beta^{-1}(\{0\})$, $W = \beta^{-1}(\{1\})$, and $F = \beta^{-1}(\{\infty\})$. Then the quasi-critical points are contained in the disjoint union $B \cup W \cup F$, and we have the identity

$$\deg(\beta) = \sum_{P \in B} e_P = \sum_{P \in W} e_P = \sum_{P \in F} e_P = |B| + |W| + |F| + (2g(S) - 2).$$

Definition

- A Belyĭ map $\gamma : \mathbb{P}^1(\mathbb{C}) \to \mathbb{P}^1(\mathbb{C})$ is dynamical if $\gamma(\{0, 1, \infty\}) \subseteq \{0, 1, \infty\}$.
- A Toroidal Belyĭ pair (E, β) consists of an elliptic curve E and a Belyĭ map $\beta : E(\mathbb{C}) \to \mathbb{P}^1(\mathbb{C}).$
- A Toroidal Belyĭ pair is defined to be imprimitive if it can be written as a non-trivial composition β = γ ∘ φ ∘ ψ for some isogeny ψ : E(ℂ) → X(ℂ), meromorphic function φ ∈ K(X(ℂ)), and dynamical Belyĭ map γ ∈ K(ℙ¹(ℂ)).

Divisors

Denote either $S = \mathbb{P}^1(\mathbb{C})$ or $S = E(\mathbb{C})$. A divisor is a formal sum

 $D = \sum_{P \in S} n_P(P), \quad \text{with} \quad n_P \in \mathbb{Z} \quad \text{and all but finitely many } n_P \text{ being zero}$

The degree of a divisor is the integer deg $D = \sum_{P \in S} n_P$.

Let $\beta:S\to \mathbb{P}^1(\mathbb{C})$ be a meromorphic function. We can associate to β a divisor of the form

$$\operatorname{div}(eta) = \sum_{P \in S} n_P(P)$$
 where $n_P = \operatorname{ord}_P(eta)$

A divisor D is principal if $D = div(\beta)$ for some meromorphic function β . The degree of a principal divisor is zero.

Proposition 7

Let *E* be an elliptic curve over \mathbb{C} . A divisor $D = \sum_{P \in S} n_P(P)$ on $S = E(\mathbb{C})$ is principal if and only if

$$\sum_{P \in S} n_P = 0 \quad \text{in } \mathbb{Z} \qquad \text{and} \qquad$$

$$\bigoplus_{P\in S} [n_P]P = O_E \quad \text{in } S.$$

Divisors

Say $\phi: S \to \mathbb{P}^1(\mathbb{C})$ is a meromorphic function. There is a group homomorphism $\phi^*: \operatorname{Div}^0(\mathbb{P}^1(\mathbb{C})) \to \operatorname{Div}^0(S)$, called the pullback of ϕ , which is defined as follows: If $D = \sum_{q \in \mathbb{P}^1(\mathbb{C})} n_q(q)$ is a divisor of degree 0 on $\mathbb{P}^1(\mathbb{C})$, then $\phi^*D = \sum_{P \in S} m_P(P)$ is a divisor of degree 0 on S, where $m_P = e_{\phi}(P) \cdot n_{\phi(P)}$.

Proposition 8

For any meromorphic function $\phi: S \to \mathbb{P}^1(\mathbb{C})$ which is not identically zero, we have the pullback

$$\phi^*((0)-(\infty)) = \sum_{P \in \phi^{-1}(\{0\})} n_P(P) - \sum_{P \in \phi^{-1}(\{\infty\})} n_P(P) \text{ in terms of } n_P = ord_P(\phi).$$

The following proposition shows that divisors behave similarly to logarithms.

Proposition 9

Let $f, g: S \to \mathbb{P}^1(\mathbb{C})$ be meromorphic functions which are not identically zero.

- $\operatorname{div}(f^a \cdot g^b) = a \cdot \operatorname{div}(f) + b \cdot \operatorname{div}(g)$ for any integers a and b.
- $\operatorname{div}(f) = \operatorname{div}(g)$ if and only if $f = k \cdot g$ for some nonzero $k \in \mathbb{C}$.

Remark: The first property is similar to $\log(a \cdot b) = \log(a) + \log(b)$.

Initial Investigations

Main Research Questions

Recall:

For an elliptic curve E we fix a Belyĭ map $\beta : E(\mathbb{C}) \to \mathbb{P}^1(\mathbb{C})$. β is a rational function with at most 3 critical values $\{0, 1, \infty\}$. Denote G to be the set of quasi-critical points (inverse images of the critical values): $G = \beta^{-1}(\{0, 1, \infty\})$.

Motivating Question #1

When does a set of quasi-critical points G form a group?

Remark:

If the set of quasi-critical points G form a group, then the quasi-critical points are torsion.

Motivating Question #2

When are the quasi-critical points torsion?

Example #1: 4T1-4_4_2.2-a

Consider the following Toroidal Belyĭ pair (E, β) :

- $\beta(x,y) = x^2$ for the elliptic curve *E* defined by $f(x,y) = y^2 (x^3 x)$
- Critical Points: These are the points P = (x, y) which make the following function vanish:

$$\frac{\partial f}{\partial x}(P) \frac{\partial \beta}{\partial y}(P) - \frac{\partial f}{\partial y}(P) \frac{\partial \beta}{\partial x}(P) = -4xy$$
$$x = 0 \quad \text{or} \quad y = 0$$

Use the condition f(x, y) = 0 to solve for these points:

$$\{(0,0), (-1,0), (+1,0), O_E\}$$

• Quasi-critical points: These are the points which map to critical values.

$$\begin{aligned} \beta(x, y) &= 0 & \{(0, 0)\} \\ \beta(x, y) &= 1 & \{(-1, 0), (+1, 0)\} \\ \beta(x, y) &= \infty & \{O_E\} \end{aligned}$$

These points are $\beta^{-1}(\{0, 1, \infty\}) = \{(0, 0), (-1, 0), (+1, 0), O_E\}.$

The critical points form a group:

 $\beta^{-1}(\{0,1,\infty\}) = \{(0,0), (-1,0), (+1,0), O_E\} \simeq Z_2 \times Z_2$

Example #1: 4T1-4_4_2.2-a

Recall from the previous slide the Toroidal Belyĭ pair (E, β) :

$$\beta(x, y) = x^2$$
 for the elliptic curve *E* defined by $f(x, y) = y^2 - (x^3 - x)$

	0 _E	(0,0)	(-1,0)	(+1, 0)
O _E	0 _E	(0,0)	(-1,0)	(+1,0)
(0, 0)	(0, 0)	O_E	(+1,0)	(-1,0)
(-1, 0)	(-1, 0)	(+1,0)	O_E	(0,0)
(+1, 0)	(+1, 0)	(-1,0)	(0,0)	0 _E

The critical points form a group: $\{O_E, (0,0), (-1,0), (+1,0)\} \simeq Z_2 \times Z_2$

• This is a very pretty example. All the critical points are rational torsion points. However, this is not the case in general.

Example #2: 5T4-5_5_3.1.1-a

Consider the following Toroidal Belyĭ pair (E, β) :

$$\beta(x, y) = ((x + 13)y + 3x^2 + 4x + 220)/432$$
 $E: y^2 + xy = x^3 - 28x + 272$

Apply the same process outlined in "Example #1" to find:

• Critical Points:

Point
$$(-4, 20)$$
 $(2, -16)$
Order 5 10

• Quasi-critical points:

Point
$$(-4, 20)$$
 $(-13 \pm 3\sqrt{-15}, 2(37 \pm 3\sqrt{-15}))$ $(2, -16)$ O_E Order510101

Note:

- The quasi-critical points do not form a group.
- All the quasi-critical points are torsion.
- The quasi-critical points are defined over $\mathbb{Q}(\sqrt{-15}) = \{a + b\sqrt{-15} \mid a, b \in \mathbb{Q}\}.$

Example #3: 5T5-5_4.1_4.1-a

Consider the following Toroidal Belyĭ pair (E, β) :

$$\beta(x,y) = ((x-5)y+16)/32$$
 $E: y^2 = x^3 + 5x + 10$

Apply the same process outlined in "Example #1" to find:

• Critical Points:

Point
$$(1,-4)$$
 $(1,4)$ Order ∞ ∞

• Quasi-critical points:

Point	(1, -4)	(1, 4)	(6, -16)	(6, 16)	O_E
Order	∞	∞	∞	∞	1

Note:

- The quasi-critical points do not form a group.
- None of the quasi-critical points are torsion.

LMFDB Label	Elliptic Curve X	Belyĭ Map ϕ	Generated Group
3T1-3_3_3-a	$y^2 = x^3 + 1$	$\frac{1-y}{2}$	Z ₃
4T1-4_4_2.2-a	$y^2 = x^3 - x$	$1 - x^2$	$Z_2 \times Z_2$
4T5-4_4_3.1-a	$y^2 = x^3 + x^2 + 16x + 180$	$\frac{4 y + x^2 + 56}{108}$	Z ₈
5T4-5_5_3.1.1-a	$y^2 + x y = x^3 - 28 x + 272$	$\frac{(x+13) y+3 x^2+4 x+220}{432}$	$Z_2 \times Z_{10}$
6T1-6_2.2.2_3.3-a	$y^2 = x^3 + 1$	-x ³	$Z_2 \times Z_6$
6T4-3.3_3.3_3.3-a	$y^2 = x^3 - 15x + 22$	$\frac{8(x-2)^2 - (x^2 - 4x + 7)y}{16(x-2)^2}$	Z ₆
6T5-6_6_3.1.1.1-a	$y^2 = x^3 + 1$	$\frac{(1-y)(3+y)}{4}$	$Z_2 \times Z_6$
6T6-6_6_2.2.1.1-a	$y^2 = x^3 + 6x - 7$	$\frac{(x-1)^3}{27}$	$Z_2 \times Z_4$
6T7-4.2_4.2_3.3-a	$y^2 = x^3 - 10731 x + 408170$	$\frac{11907(x-49)}{(x-7)^3}$	$Z_2 \times Z_4$
6T12-5.1_5.1_3.3-b	$y^2 + xy + y = x^3 + x^2 - 10x - 10$	$27 \frac{(x+4)(2x^2-2x-13)-(x+1)^2y}{(x^2-x-11)^3}$	$Z_2 \times Z_8$
6T12-5.1_5.1_5.1-a	$y^2 = x^3 + x^2 + 4x + 4$	$-16 \frac{(x^2 - 2x - 4)y + 8(x + 1)}{(x - 4)x^5}$	Z ₆
8T2-4.4_4.4_2.2.2.2-a	$y^2 = x^3 + x$	(x + 1) ⁴	$Z_2 \times Z_4$
8T7-8_8_2.2.1.1.1.1-a	$y^2 = x^3 - x$	$8 \times (x^2 + 1) \times x^4$	$Z_2 \times Z_4$
Proj	ect #2: Critical Points of Toroidal Belvi Map	Critical Points of Toroidal Belvi Maps	25 / 41

Main Results

Main Research Questions

- When does a set of quasi-critical points G form a group?
- When are the quasi-critical points torsion?

Theorem (PRiME 2021

Say (E, β) is a Toroidal Belyĭ pair, with $N = \deg(\beta)$, and denote

$$Q_0 = \bigoplus_{P \in \beta^{-1}(\{0\})} [e_P]P = \bigoplus_{P \in \beta^{-1}(\{1\})} [e_P]P = \bigoplus_{P \in \beta^{-1}(\{\infty\})} [e_P]P.$$

Then β can be normalized, that is, there exists $P_0 \in E(\mathbb{C})$ satisfying $[N]P_0 = Q_0$ such that $\beta((x, y) \oplus P_0) = f(x, y)/g(x, y)$ for two polynomials $f, g \in \mathcal{K}(E(\mathbb{C}))$ with divisors

$$div(f) = \sum_{P \in B} e_P(P) - N(O_E) \qquad B = \beta^{-1}(\{0\}) \ominus P_0,$$

$$div(f - g) = \sum_{P \in W} e_P(P) - N(O_E) \qquad \text{where} \qquad W = \beta^{-1}(\{1\}) \ominus P_0,$$

$$div(g) = \sum_{P \in F} e_P(P) - N(O_E) \qquad F = \beta^{-1}(\{\infty\}) \ominus P_0$$

Denote $\phi(x, y) = \beta((x, y) \oplus P_0)$. Then, observe that $\phi^{-1}(\{q\}) = \beta^{-1}(\{q\}) \oplus P_0$, for any $q \in \mathbb{P}^1(\mathbb{C})$. Recall that $e_P = e_\beta(P) = e_\phi(P \oplus P_0)$. Then, by Proposition 8, we have the principal divisors

$$div(\phi) = \sum_{P \in B} e_P(P) - \sum_{P \in F} e_P(P) \qquad B = \beta^{-1}(\{0\}) \oplus P_0 = \phi^{-1}(\{0\}),$$

$$div(\phi - 1) = \sum_{P \in W} e_P(P) - \sum_{P \in F} e_P(P) \qquad W = \beta^{-1}(\{1\}) \oplus P_0 = \phi^{-1}(\{1\}),$$

$$F = \beta^{-1}(\{\infty\}) \oplus P_0 = \phi^{-1}(\{\infty\}).$$

Then, it follows from Proposition 7 that

$$\left(\bigoplus_{P\in B} [e_P]P\right)\ominus\left(\bigoplus_{P\in F} [e_P]P\right) = \left(\bigoplus_{P\in W} [e_P]P\right)\ominus\left(\bigoplus_{P\in F} [e_P]P\right) = O_E.$$

The statement for Q_0 follows. To show that P_0 exists as claimed, consider the map $\psi : E(\mathbb{C}) \to E(\mathbb{C})$ defined by $\psi(P) = [N]P$. Proposition 3 asserts that ψ is surjective, hence the statement for P_0 follows.

We will show that f, g exist as claimed by showing that D_1, D_2 are principal divisors, where

$$D_{1} = \sum_{P \in B} e_{P}(P) - N(O_{E}) \quad \text{and} \quad D_{2} = \sum_{P \in F} e_{P}(P) - N(O_{E})$$

First, consider D_1 . Then, by Proposition 6,

$$\deg(D_1) = \sum_{P \in B} e_P - N = N - N = 0$$

And, by the definition of $Q_0 = [N]P_0$,

$$\left(\bigoplus_{P\in B} [e_P]P\right)\oplus [-N]O_E = \bigoplus_{P\in\beta^{-1}(\{0\})} [e_P](P\ominus P_0) = [N]P_0\ominus [N]P_0 = O_E.$$

It follows from Proposition 7 that there exists $f \in \mathcal{K}(E(\mathbb{C}))$ such that $\operatorname{div}(f) = D_1$. By a similar argument, there exists $g \in \mathcal{K}(E(\mathbb{C}))$ such that $\operatorname{div}(g) = D_2$. Now observe that

$$\operatorname{div}(f/g) = \operatorname{div}(f) - \operatorname{div}(g) = \left(\sum_{P \in B} e_P(P) - N(O_E)\right) - \left(\sum_{P \in F} e_P(P) - N(O_E)\right) = \operatorname{div}(\phi).$$

Therefore, Proposition 9 asserts that $\phi = k \cdot f/g$, for some constant k. Substituting $k \cdot f$ as f, if necessary, we see that $\phi = f/g$. Consider div(f - g). Using that $\phi = f/g$, substitute in $f = \phi \cdot g$ to see that

$$\mathsf{div}(f-g) = \mathsf{div}\big(g \cdot (\phi-1)\big)$$

$$= \operatorname{div}(g) + \operatorname{div}(\phi - 1)$$

$$=\left(\sum_{P\in F}e_{P}\left(P\right)-N\left(O_{E}\right)\right)+\left(\sum_{P\in W}e_{P}(P)-\sum_{P\in F}e_{P}(P)\right)$$

$$=\sum_{P\in W}e_{P}\left(P\right) -N\left(O_{E}\right) .$$

Theorem (PRiME 2021)

Say X is an elliptic curve and ϕ a toroidal Belyĭ map, and denote $\mathcal{G} = \phi^{-1}(\{0, 1, \infty\}) \text{ as the set of quasi-critical points.}$

- β = φ ∘ ψ yields a Toroidal Belyĭ map on E for any non-constant isogeny ψ.
- $\Gamma = \beta^{-1}(\{0, 1, \infty\})$ is contained in the set of all torsion points in $E(\mathbb{C})$ whenever *G* is a subset of the set of all torsion points in $X(\mathbb{C})$.
- Γ is a group whenever G is group.

Corollary (PRiME 2021)

There are infinitely many imprimitive Belyĭ pairs where the set of quasi-critical points form a group.

Figure: An imprimitive Toroidal Belyĭ Map

Proof of Theorem

Observe that $\Gamma = \{P \in E(\mathbb{C}) \mid \psi(P) \in G\} = \psi^{-1}(G)$; this will be useful in the proofs.

Lemma 1

 (E,β) is a Toroidal Belyĭ pair.

Assume by way of contradiction that $\beta = \phi \circ \psi$ is not a Belyĭ map. By assumption, there exists a point $P \in E(\mathbb{C})$ such that $\beta(P) = q \notin \{0, 1, \infty\}$ is a critical value. Since q is a critical value, $e_{\beta}(P) \ge 2$. However $e_{\beta}(P) = e_{\phi}(\psi(P))$, it follows that $e_{\phi}(Q) \ge 2$ for some $Q = \psi(P) \in X(\mathbb{C})$. Then Q is a critical point for ϕ with value $q = \beta(P) = \phi(Q)$. Then, ϕ has a critical value $q \notin \{0, 1, \infty\}$, which is a contradiction. Therefore, β is a Belyĭ map.

Lemma 2

If $G \subseteq X(\mathbb{C})_{\text{tors}}$ then $\Gamma \subseteq E(\mathbb{C})_{\text{tors}}$.

Take $Q = \psi(P) \in G$ with $P \in \Gamma$. Since $G \subseteq X(\mathbb{C})_{tors}$, then there exists a positive integer *n* such that $[n]Q = O_X$. Since ψ is a group homomorphism, then $[n]Q = [n]\psi(P) = \psi([n]P)$. It follows that $\psi([n]P) = O_X$. Thus, $[n]P \in \ker(\psi)$, which is shown to be finite in Proposition 3. By Proposition 1, there exists a positive integer *m* such that $[m]R = O_E$ for any $R \in \ker(\psi)$. Denoting N = mn, we have $[N]P = [m]([n]P) = O_E$, showing $P \in E(\mathbb{C})_{tors}$. Thus, $\Gamma \subseteq E(\mathbb{C})_{tors}$.

Lemma 3

Suppose (G, \oplus) is a group. Then Γ is a subgroup of $(E(\mathbb{C}), \oplus)$.

To show that Γ is a subgroup of $(E(\mathbb{C}), \oplus)$, we show that (i) Γ is a non-empty set and (ii) that Γ is closed under differences. For (i), $\psi(O_E) = O_X \in G$ because (G, \oplus) is a group and ψ is a group homomorphism, so $O_E \in \psi^{-1}(G) = \Gamma$. For (ii), consider $\psi(P), \psi(Q) \in G$ where $P, Q \in \Gamma$. Since (G, \oplus) is a group, we have $\psi(P \oplus Q) = \psi(P) \oplus \psi(Q) \in G$, which means that $P \oplus Q \in \Gamma$. Thus, Γ is a subgroup of $(E(\mathbb{C}), \oplus)$.

Corollary

There are infinitely many imprimitive Toroidal Belyĭ pairs where the set of quasi-critical points forms a group.

Consider $X: y^2 = x^3 + 1$ and the Belyĭ map $\phi(x, y) = (1 - y)/2$. We have seen that the quasi-critical points, namely $G = \phi^{-1}(\{0, 1, \infty\}) = \{(0, -1), (0, 1), O_E\} \simeq Z_3$, forms a group. Our theorem asserts that (E, β) forms a Toroidal Belyĭ pair for any non-constant isogeny $\psi: E(\mathbb{C}) \to X(\mathbb{C})$ where $\Gamma = \beta^{-1}(\{0, 1, \infty\})$ forms a group. Since there are infinitely such isogenies, the result follows.

Methods

	△ → Belyi maps	· Login	
LIVER	Belyi maps	Peedbalok - Hide Mena	
Introduction	The database currently contains 616 Belyi maps of degree up to 9. Here are some further statistics.	Learn more about (1)	
Overview Random Universe Knowledge	Browse	Completeness of the data Source of the data	
L-functions	By degree: 1 2 3 4 5 6 7 8 9	Belyi labels	
Degree 1 Degree 2 Degree 3 Degree 4	Some interesting Belyi maps or a random Belyi map		
	Search		
Modular forms	Degrae 5		
Classical Maass			
Hibert Bianchi Sienel	Group 415 49.475		
Mariatian	Orders 5 0g. 4, 5-6		
Fliptic curves over 0	[a, b, c] triple [4,4,3] #4.4.49		
Elliptic curves over Q(a)	Genus 1 0.0.2		
Genus 2 ourves over Q	Orbit size 2 PA 5 55		
Higher genus families	Geometry type		
Abelian varieties over F _g Rohé mono	Results to display 50		
Dily maps			
Preids	Display: List of maps Random map		
p-adic fields	Find		
Representations			
Dirichlet characters	Label 4T5-4_4_3.1-a Find		
Artin representations	eg.475-4_4.3.1-e		
Motives			
Hypergeometric over Q			
Groups			
Galois groups			
Lattices			
Incompany.			
inventory			

https://beta.lmfdb.org/Belyi/

- We input Belyĭ pairs to our program and process if all the quasi-critical points are torsion.
- We hope to process all 251 available Belyĭ pairs.
- Our current program has a bottleneck caused by difficulty in computing field extensions.
- The table below records how many of the available Belyĭ pairs we have successfully processed.

Degree of	Number Of Belyĭ Pairs	Number Of Belyĭ Pairs With
Belyĭ Pair	We Successfully Processed	All The Quasi-Critical Points As Torsion Points
3	1/1	1
4	2/2	2
5	7/7	1
6	29/35	7
7	15/73	0
8	30/94	2
9	23/39	0
All	107/251	13

Future Work

Modify the Sage code so that we can process more examples.

• We have 13 examples where the quasi-critical points are torsion, and we have 1 example that can we explained by our main theorem. We'd like to know if there are more examples, where the quasi-critical points are torsion, that cannot be explained by our main theorem.

• Create a web page where we can host the data found over the summer so that others may see our results.

Thank you for listening!

Special Thanks to:

- Pomona College and everyone who contributed to making PRiME possible this year.
- The NSA for funding our project (NSA H98230-21-1-0015).
- Alex Barrios, Rachel Davis, and the other PRiME students for a productive and inclusive environment. Special thanks to Aurora Hiveley for her invaluable help with our diagrams.
- John Voight for the Toroidal Belyĭ pair data in LMFDB, as well as all the mathematicians who have contributed to LMFDB over the years.
- Our research advisor Edray Goins for leading and guiding us through the preparation and completion of this project.